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Constitutive relations for steady, dense granular flows
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This work focuses on the mechanical response of dry granular materials under steady, simple shear conditions.
In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire
range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear
sum of a frictional and a kinetic component. The frictional and the kinetic contributions are modeled in the context
of the critical state theory and the kinetic theory of dense granular gases, respectively; in the latter, the correlated
motion among the particles, which is likely to occur at high concentration, is also included. In accordance with
recent findings on disordered granular packings, the frictional component of stresses is assumed to vanish when
the concentration is below the random loose packing. According to this approach, four nondimensional quantities
govern steady, simple shear flows: the concentration, the shear to normal stress ratio, the ratio of the time scales
associated with the motion perpendicular and parallel to the flow, and the ratio between the particle stiffness and
the normal stress. The present theory allows us to reproduce, in a notable way, both numerical simulations on
simple shear flows of disks and physical experiments on incline flows of glass spheres taken from the literature.
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I. INTRODUCTION

Recently, the flow of dense granular materials has been
the subject of many scientific works (Ref. [1] and references
therein); this is mainly due to the large number of natural phe-
nomena involving solid particles flowing at high concentration
(e.g., debris flows and landslides) [2].

In contrast to the flow of dilute granular media, where
the energy is essentially dissipated in binary collisions, the
flow of dense granular materials is characterized by multiple,
long-lasting, and frictional contacts among the particles. A
satisfactory fundamental theory for the latter is still lacking,
while the role of collisions has been successfully modeled by
using the so-called kinetic theories [3–5].

The French research group GDR MiDi [6] has suggested
that dense granular materials obey a local, phenomenological
rheology that can be expressed in terms of two relations
between three nondimensional quantities: concentration, shear
to normal stress ratio, and the inertial parameter (ratio of
the time scales associated with the motion perpendicular and
parallel to the flow). Despite the notable results obtained in
modeling many different configurations of dense granular
flows [7–11], the GDR MiDi rheology does not apply when
there is an additional time scale associated with the particle
velocity fluctuations [12], whose intensity is provided by the
granular temperature; in fact, the role of the latter cannot be
disregarded in regions of thickness some diameters close to
the boundaries (free surface, rigid, and/or erodible bottom)
[13,14]. The so-called kinetic regime, characterized by widely
spaced particles and rapid deformations, has been largely
studied in the context of kinetic theories [5,15,16]. In those
works, the particles are assumed to interact mainly through
instantaneous, binary, and uncorrelated collisions. Jenkins
[12,17] has recently extended the kinetic theories to account
for the decrease in the energy dissipation due to the existence
of correlated motion among the particles occurring at high
concentration. Moreover, a heuristic extension of kinetic
theories to deal with noninstantaneous interparticle collisions,

due to the finite stiffness of the particles, has been suggested by
Hwang and Hutter [18]. The possibility of sticking collisions
has also been included in the theory in an approximate
way [19]. Nevertheless, kinetic theories are not capable of
capturing the roughly rate-independent behavior observed at
concentrations near the random close packing [20].

On the other hand, a large number of constitutive relations
have been proposed to account for the irreversible, nonholo-
nomic, time-dependent mechanical behavior of granular media
in the so-called quasistatic regime [21–25], i.e., when the
deformations are extremely slow and the concentration ap-
proaches the random close packing. Those phenomenological
constitutive models, mainly based on either the elastoplastic
or the viscoplastic theory, do not incorporate the granular
temperature as a state variable of the problem. Therefore,
they are unable to deal with the phase transition of granular
materials from a solid-like to a fluid-like state and vice versa.

The purpose of the present work is to propose general,
physically sound constitutive equations for dense granular
materials, including, as special cases, the aforementioned
kinetic and quasistatic approaches. For the sake of simplicity,
we focus on the case of steady, simple shear flows of identical,
inelastic, frictional spheres, and we linearly add the kinetic
(from the extended kinetic theory of Jenkins [12,17]) and
the frictional contributions in the expression of the granular
stresses.

The frictional component is modeled by using the “critical
state” theory introduced in soil mechanics 50 years ago and
still largely adopted [26,27]. According to this theory, the
granular material approaches a certain attractor state, called
the critical state, independent of the initial arrangement,
characterized by the capability of a granular material of
developing unlimited shear strains without any change in the
concentration. There the shear stress results, proportional to the
normal stress through the tangent of the critical friction angle,
independent of the concentration. Also, the well-known critical
state line, linking, in the semilogarithmic plane, the reciprocal
of the concentration with the frictional normal stress, can be
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conveniently redefined on the basis of dimensional arguments
in terms of a proportionality between the frictional normal
stress and the particle stiffness through a function of the
concentration. Given that a disordered granular packing, i.e., a
dense granular material at zero granular temperature, exists
only for a range of concentrations between the random
loose and close packings, [28] a form for the concentration
dependence of the frictional normal stress that makes the
latter vanish at the random loose packing is defined. Very
old experiments performed by Wroth [29] assess the validity
of this assumption.

The idea of adding kinetic and frictional contributions
in the granular stresses has been previously proposed by
Johnson and Jackson [30,31]. However, Johnson and Jackson
did not take into account the role of particle stiffness on the
frictional component of the normal stress, so the constitutive
relation for the latter was not physically based. Moreover, for
the kinetic contribution to the stresses, they used a kinetic
theory developed for dilute flows that does not take into
account the breaking of the molecular chaos assumption [32]
at high concentrations. Hence, they were unable to explain
the variation of the ratio of shear to normal stress with
concentration observed in numerical simulations on simple
shear flows [20]. Similar considerations apply also to the
theory developed by Savage [33], who assumed a plastic
behavior and the presence of Gaussian fluctuations of the strain
rate and stresses in the planar flow of a dense granular material
and who obtained constitutive relations very similar to those
of Johnson and Jackson [30,31].

The present theory is able to qualitatively and quantitatively
reproduce both the numerical simulations on simple shear
flows of disks obtained by da Cruz et al. [20] and the physical
experiments on incline flows of glass spheres over rigid beds
performed by Pouliquen [34].

This paper is organized as follows: Sec. II deals with the
simplifying assumptions adopted in this work, the constitutive
relations, and the analytical solution to the steady, simple shear
flow of spheres at high concentration. In Sec. III, the theory is
tested against the experimental and numerical results obtained
by Pouliquen [34] and da Cruz et al. [20], and in Sec. IV, some
concluding remarks and suggestions for future developments
are drawn.

II. THEORY

A. Fundamental assumptions and constitutive relations

As already stated, we focus here on steady, simple shear
flows of identical, inelastic, frictional, and cohesionless
spheres. We make the fundamental assumption, as in Johnson
and Jackson [30], that the kinetic and the frictional momentum
exchange coexist in the flow and linearly add the two
contributions in the expression of the granular stresses:

σ = σk + σf ,
(1)

τ = τk + τf ,

where σ and τ are the normal stress in the direction perpendicu-
lar to the flow and the shear stress, respectively (see Fig. 1 for a
sketch of the flow configuration). Here and in what follows, all
quantities are made dimensionless using the particle diameter

FIG. 1. Simple shear flow configuration.

and density and the gravitational acceleration. We use the
subindices k and f to refer to quantities associated with the
kinetic and the frictional contributions, respectively.

As already mentioned, we assume that at particle concen-
tration ν below the random loose packing νrlp the frictional
contribution to the stresses vanishes, in accordance with the
range of existence of a disordered granular packing [28].

The constitutive relations proposed by Garzó and Dufty
[35], as modified by Jenkins and Berzi [19], are employed to
express the kinetic stresses,

σk = f1f4T , (2)

τk = f2f4T
1/2γ̇ , (3)

and the rate of energy dissipation in collisions,

� = f3

L
f4T

3/2. (4)

Here T is the granular temperature (one third of the mean
square of the particle velocity fluctuations). The functions
f1,f2, and f3 in the dense limit, i.e., for concentrations
higher than, say, 40%, are derived from those reported in [19]
and summarized in Table I. As in [19,36], e is an effective
coefficient of restitution that depends on the coefficient of
normal restitution ε and the coefficient of tangential restitution
in a sticking collision β [37]. G is the product of ν and the
radial distribution function; for the latter, the expression

TABLE I. Auxiliary functions for the kinetic constitutive relations.

f1 = 2(1 + e)νG

f2 = 8J

5π 1/2
νG

f3 = 12

π 1/2
νG(1 − e2)

f4 =
(

1 + 2

s

T 1/2

E1/2

)−1

1 − e2

4
≡ 1 − ε2

4
+ 1 + β

7
−

(
1 + β

7

)2 [
1 + 5(1 + β)

14 − 5(1 + β)

]

G = 5.69ν(νrcp − 0.49)

νrcp − ν

J = 1 + e

2
+ π

4

(3e − 1) (1 + e)2

[24 − (1 − e)(11 − e)]

L = max

[
1,

(
1

2
c

G1/3

T 1/2
γ̇

)]
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suggested by Torquato [38], which diverges as the concentra-
tion approaches the random close packing, νrcp, is adopted. In
Eq. (4), L is a correlation length, accounting for the decrease
in the collisional energy dissipation due to the presence of
correlated motion of particles that is likely to occur when the
flow is dense [12,17]. In its expression, reported in Table I, c

is a constant of order unity.
The function f4 in Eqs. (2)–(4), not present in the

constitutive relations of Jenkins and Berzi [19], takes into
account the influence of the particle stiffness on the contact
duration during collisions; its form, reported in Table I, has
been suggested by Hwang and Hutter [18]. There E is the
Young’s modulus of the particles, and s is the mean separation
distance between the particles (at high concentration, it is of
the order of one tenth of a diameter).

As already mentioned, the frictional component of the shear
stress is taken to be proportional to the frictional component
of the normal stress through the tangent of the critical friction
angle φc, [26,27]

τf = σf tan φc. (5)

Dimensional analysis suggests that the constitutive relation
for the frictional normal stress in the absence of flow must be
written as

σf = f5K, (6)

where K is the particle stiffness, equal to πE/8 in the case
of linear contacts [39], and f5 is solely a function of the
concentration. σf is expected to increase with concentration
and diverge at the random close packing. Since σf is also
assumed to vanish at the random loose packing, we take

f5 = max

(
a

ν − νrlp

νrcp − ν
, 0

)
, (7)

where a is a material coefficient inferred from experiments.
Experimental investigations on the critical state of identical

spheres are, however, rare. To our knowledge, only Wroth [29]
performed experiments on the critical state of 1 mm stainless
spheres [40]. The experiments confirm that the ratio of τf to
σf , i.e., tan φc, is independent of the concentration and that
f5 is a unique function of ν (Fig. 2). There the steel Young’s
modulus is known, giving K = 1.1 × 109. The solid line in
Fig. 2 corresponds to the theoretical expression of Eq. (7),
with νrcp = 0.619, νrlp = 0.598, and a = 1.8 × 10−6 (obtained
from linear regression).

B. Analytical solution of steady, simple shear flow

Under the usual assumptions of constant shear and normal
stresses, the steady, simple shear flow is completely governed
by the balance of fluctuating energy,

τkγ̇ = �. (8)

As the granular temperature is constant in the steady, simple
shear flow, the divergence of the flux of fluctuating energy
is here neglected. Moreover, as in Johnson and Jackson [30],
the two dissipation mechanisms (i.e., collisions and friction)
are assumed to be uncoupled, and the work of the frictional
component of the shear stress is postulated not to produce
fluctuating energy. Hence, Eq. (8) implies that the energy
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FIG. 2. Experimental (circles, from Ref. [29]) against theoretical
[solid line, from Eq. (7)] coefficient f5 = σf /K as function of
concentration for steel spheres.

produced through the work of the kinetic shear stress is entirely
dissipated in collisions.

Under this fundamental hypothesis, by substituting Eqs. (3)
and (4) in Eq. (8) and using the constitutive expression for L

of Table I, there is an algebraic relation between the shear rate
and the granular temperature,

T = f6γ̇
2, (9)

with f6 = f2L/f3. Equation (9) shows that the time scale
associated with the particle fluctuations is not a free variable
in steady, simple shear flows but can be algebraically obtained
from the time scale associated with the shear rate, as already
shown by Jenkins [12] and Jenkins and Berzi [19]. In this
situation, the dimensional analysis performed by the French
research group GDR MiDi [6] holds, and the flow can be
completely described by three dimensionless quantities if the
particles are rigid: the inertial number I ≡ γ̇ (ν/σ )1/2, the
concentration ν, and the stress ratio μ ≡ τ/σ . In particular,
as already mentioned, the inertial number represents the ratio
between the microscopic time scale (ν/σ )1/2, associated with
the transversal motion of a particle submitted to a normal
stress σ , and the macroscopic time scale 1/γ̇ , associated with
the motion parallel to the flow. da Cruz et al. [20] suggest
that for small values of I , i.e., small shear rate and/or large
pressure, the particle inertia is not relevant and the flow is in
the quasistatic regime, whereas large values of I correspond
to the kinetic regime.

Using Eqs. (1)–(3), (5), (6), and (9), the constitutive
relations of Table I, and the definition of the inertial number,
we obtain

μ = tan φc + (
f2f

1/2
6 − tan φcf1f6

)
f4

I 2

ν
(10)

and

I =
[

ν

f1f6f4

(
1 − Kf5

σ

)]1/2

. (11)
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By setting I = 0, i.e., γ̇ = 0, in Eq. (11), the maximum
concentration that can be achieved under steady conditions
reads

νmax = νrcp

1 + aK/σ
+ νrlp

1 + σ/(aK)
. (12)

For small values of K/σ , νmax approaches the random close
packing; on the other hand, νmax tends to the random loose
packing when K/σ is large.

In this work, we limit the analysis to values of K/σ for
which the coefficient f4 is approximately 1; i.e., the particle
stiffness does not affect the kinetic components of the stresses.
This is mainly due to fact that an analytical expression for the
mean separation distance between the particles is still lacking.
The coefficient f4 of Table I can be rewritten as

f4 =
[

1 + 2
(π

8

)1/2 ν−1/2

s
f

1/2
6 I

(
K

σ

)−1/2
]−1

. (13)

For dense flows, s and f6 are of the order of 10−1, while ν

and I are of the order of unity. The second member on the
right hand side of Eq. (13) can therefore be neglected if K/σ

is greater than 105.

III. RESULTS AND DISCUSSION

In this section, the theory is validated against the numerical
simulations on steady, simple shear flows of slightly polydis-
persed, cohesionless disks [20] and the experiments on incline
flows of glass spheres over rigid beds [34].

In the following, we use a = 1.8 × 10−6, νrlp = 0.598, and
νrcp = 0.619, as for steel spheres; e = 0.60 and c = 0.50, as
suggested by Jenkins [12] and Jenkins and Berzi [19] for dense
flows of glass spheres; and tan φc = 0.38, the angle of repose
for glass spheres reported by Pouliquen [34].

Figure 3 shows the theoretical relations of Eqs. (10) and
(11) between the stress ratio μ, the concentration ν, and
the inertial number I for three different ratios K/σ . All
the distinctive features observed by da Cruz et al. [20] on
numerical simulations on disks are present in Fig. 3: (i) At
the lowest values of I , the kinetic components of the stresses
are negligible, so the stress ratio is approximately constant
and equal to tan φc, a substantially rate-independent regime
[Fig. 3(a)]. (ii) In that regime, the concentration [Fig. 3(b)]
shows the tendency to saturate toward νmax, lying between the
random loose and close packings. (iii) At the largest values
of I , the frictional components of the stresses vanish, and
the stress ratio saturates to a constant value, as predicted by
classical kinetic theories in the dense limit [41].

Figure 3 shows that K/σ does not substantially affect the
curves since, for the granular material here considered, the
values of νrlp and νrcp are very close. A deeper investigation
of the influence of K/σ for values smaller than 105, i.e., for
softer particles and/or for larger normal stresses (of interest in
earth science), is deferred to future presentations.

Also shown in Fig. 3(a) are the experimental results on the
steady and fully developed flows of glass spheres on inclined
planes performed by Pouliquen [34], for which K/σ is of
the order of 108. In that flow configuration, the stress ratio
is constant along the flow cross section and equal to the
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FIG. 3. Theoretical (a) stress ratio and (b) concentration as
functions of the inertial number for K/σ = 106 (dot-dashed line),
K/σ = 107 (dashed line), and K/σ = 108 (solid line).

tangent of the angle of inclination of the plane [19]. If the
flow is thick enough (say, depths greater than ten diameters),
the influence of the boundaries can be neglected, and both
the inertial number and the concentration are also constant
along the cross section of the flow [13,19]. The incline flow
configuration works therefore as a rheometer [6] and provides
values of μ and I that can be compared with those derived
from the present theory.

Pouliquen [34] measured the particle depth-averaged ve-
locity V and the depth h for different angles of inclination
of the plane θ (ranging from 22◦ to 28◦). As shown by GDR
MiDi [6], the experimental values of the inertial number and
the stress ratio correspond to I = 5V/[2(cos θ )1/2h3/2] and
μ = tan θ , respectively.

The experimental values reported on Fig. 3(a) have been
obtained by averaging all the data reported by Pouliquen [34]
with depths greater than ten diameters. The agreement between
the theoretical and the experimental results is remarkable,
especially because there is no tuning of the model parameters.
It is also worth emphasizing that the constitutive relation
for the frictional component of the normal stress holds, in
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FIG. 4. Theoretical stress ratio as a function of the inertial number
for frictional (solid line) and frictionless (dash-dotted line) particles.

principle, for steel spheres. As already stated, the theories of
Johnson and Jackson [30,31] and Savage [33] would predict
a constant stress ratio, independent of the inertial number, in
contrast to the experiments. da Cruz et al. [20] also investigated
the influence of the interparticle friction on the curves of
Fig. 3. The interparticle friction affects the critical friction
angle [20] and the values of νrlp and νrcp [28,39]. In particular,
for frictionless particles, tan φc = 0 and νrlp = νrcp = 0.634

[28,42]. Figure 4 shows that, unlike the frictional case, the
present theory predicts a strictly sublinear dependence of the
stress ratio on the inertial number for frictionless particles, a
distinctive feature observed in the numerical simulations [20].

IV. CONCLUSIONS

In this paper, a constitutive model for dense granular flows
of inelastic, frictional, identical spheres, obtained by linearly
adding the frictional and the kinetic stresses, is proposed.
We have assumed that the frictional component of the stress
vanishes when the particle concentration is less than the
random loose packing, which represents the lower limit for
the existence of a disordered granular packing [28]. Both the
role of particle stiffness and the correlated motion among
the particles have been accounted for. We have used the
constitutive relations to solve for the steady, simple shear
flow of spheres, and we have shown that the present theory
is capable of reproducing, qualitatively and quantitatively,
the numerical simulations on disks [20] and the experiments
on incline flows of glass spheres [34]. We have restricted
the analysis to flows for which the ratio of the particle
stiffness to the normal stress is large enough to not affect the
kinetic components of the stresses. In fact, many geophysical
flows are characterized by lower values of that ratio, so
further investigations are required. An extension of the present
approach to deal with unsteady problems will be the subject
of future presentations.
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